Minimization of Cable-Net Reflector Shape Error by Machine Learning
نویسندگان
چکیده
منابع مشابه
Learning principal directions: Integrated-squared-error minimization
A common derivation of principal component analysis (PCA) is based on the minimization of the squared-error between centered data and linear model, corresponding to the reconstruction error. In fact, minimizing the squared-error leads to principal subspace analysis where scaled and rotated principal axes of a set of observed data, are estimated. In this paper, we introduce and investigate an al...
متن کاملDiagnosing Breast Cancer by Machine Learning
Background and Aim: Cancer and in particular Breast cancer are among the diseases that have the highest mortality rate in Iran after heart disease. The accurate prognosis for Breast cancer is important, and the presence of various symptoms and features of this disease makes it difficult for doctors to diagnose. This study aimed to identify the factors affecting Breast cancer, modeling and ultim...
متن کاملMachine Learning via Polyhedral Concave Minimization
Two fundamental problems of machine learning misclassi cation minimization and feature selection are formulated as the minimization of a concave function on a polyhedral set Other formulations of these problems utilize linear programs with equilibrium constraints which are generally intractable In contrast for the proposed concave minimization formulation a successive linearization algorithm wi...
متن کاملAlternating minimization and Boltzmann machine learning
Training a Boltzmann machine with hidden units is appropriately treated in information geometry using the information divergence and the technique of alternating minimization. The resulting algorithm is shown to be closely related to gradient descent Boltzmann machine learning rules, and the close relationship of both to the EM algorithm is described. An iterative proportional fitting procedure...
متن کاملTraining and Evaluating Error Minimization Rules for Statistical Machine Translation
Decision rules that explicitly account for non-probabilistic evaluation metrics in machine translation typically require special training, often to estimate parameters in exponential models that govern the search space and the selection of candidate translations. While the traditional Maximum A Posteriori (MAP) decision rule can be optimized as a piecewise linear function in a greedy search of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Spacecraft and Rockets
سال: 2019
ISSN: 0022-4650,1533-6794
DOI: 10.2514/1.a34464